制氢|制氮|制氧|气体设备|气体纯化|气体回收|混合配气
 
今天是
 
新闻搜索
 
最新新闻
1  钢制高压储氢容器检验
2  第四届中国(佛山)国
3  氢能“奥运会”202
4  数字劳动力
5  MAT旋压铸造
6  加氢站高压储氢容器
7  燃料电池电动汽车术语
8  渗碳钢
9  水处理专业名称解析
10  换热器传热和腐蚀
热门新闻
 通用阀门材料及常用技 52903
 水电解制氢设备术语和 25341
 蓝宝石生产和用途 19203
 氘气的物理性质、指标 16185
 世界八大气体公司 13922
 纯氧对人体的危害 13653
 超纯、洁净管要求、生 13224
 生物能 12740
 海川化工论坛 12293
 硅烷(SiH4) 11594
新闻中心  
工业软件
双击自动滚屏 发布者:zq1229 发布时间:2020/10/15 13:53:18 阅读:40次 【字体:
 
工业软件
关键词:工业软件、数学科学、物理科学、计算机技术、工业技术系统层、组件层、应用层、人机交互层、CAD、CAE、EDA、工程经验、数据导入、模型修复、显示、工程知识、计算机科学
 
描述:工业软件尽管它支撑了整个工业的体系。是架构在数学科学、物理科学、计算机技术和工业技术之上的宏大建筑,一座复合型知识的宫殿。分别是令人望而生畏的数学、物理、计算机和工程经验。经过漫长的物理机理的冶炼、计算机科学与技术的萃取,最后还必须经过工程知识的淬火,才能成为一个成熟可用的工业软件产品。
前处理不仅仅是数据导入、模型修复和显示,很大一块是网格剖分的能力,这部分的技术门槛不低。后处理在大规模的数据处理和直观、动态、炫酷可视化展示方面也有很多需要研发的内容,尤其是在B/S架构下,如何通过Web页面快速高质量加载巨大的CAE计算结果。工业软件的产业界,已经发展出成熟的产业提供商(组件)的生态。分别为系统层、组件层、应用层和人机交互层。
 
工业软件最奇妙的地方,它一旦集成了前人的技术,它就很少会流失。这跟任何一种设备类的不同,但工业软件则是一层一层,既有来自软件厂商数学、物理奇才的心血,更有来自数百万工业用户的使用反馈——这形成了一座坚实的护城河
 
 
作者简介

林雪萍:南山工业书院发起人,北京联讯动力咨询公司总经理

赵堂钰:南山工业书院工业软件研究组

陆云强:南山工业书院工业软件研究组
林雪萍:南山工业书院发起人,北京联讯动力咨询公司总经理

 

 

工业软件中几乎最难啃的三座大山,就是CAD、CAE和EDA,大山中间还穿插了许多小的丘陵,如CAM、拓扑优化、工程数据库等。工业软件这三座大山,是人类基础学科和工程知识的集大成者。
 
尽管它支撑了整个工业的体系,但它的市场份额却小的可怜,不拿显微镜,是找不到它的存在。然而它自身的构成,分别是令人望而生畏的数学、物理、计算机和工程经验。没有一种产值如此微不足道的工业产品,却需要有如此漫长的生命轨迹。从大学的数学方程式开始出发,经过漫长的物理机理的冶炼、计算机科学与技术的萃取,最后还必须经过工程知识的淬火,才能成为一个成熟可用的工业软件产品。
 
四大技术图谱就像四座护法金刚,形成了深不可测的技术鸿沟。这对于任何一个工业软件企业,十年发展的沉淀,那还只是开始。这条路,太漫长了。
 
数学基础需要扎实
 
工业软件首先要有良好的数学基础。计算机辅助设计软件CAD这个学科的渊起和发展,主要是数学的一个分支微分几何突破之后,进化出了一个新学科——计算几何,孔斯、弗格森、贝塞尔等为CAD,CAE,EDA等软件所依赖的3D几何造型提供了强有力的理论基础,在此基础上发展起来的NURBS相关曲线曲面理论和算法是目前大部分商用软件所使用几何引擎的关键技术。
 
而仿真分析软件CAE无论对于数据的前处理和后处理,还是各种求解器,对数学也有很高的要求。
 
前处理不仅仅是数据导入、模型修复和显示,很大一块是网格剖分的能力,这部分的技术门槛不低。算是CAE领域后起之秀Altair作为有几十产品的上市公司,至今前处理软件HyperMesh还是最重要的旗舰产品,贡献了公司最多的收入,也是在CAE领域站稳脚的基石。后处理在大规模的数据处理和直观、动态、炫酷可视化展示方面也有很多需要研发的内容,尤其是在B/S架构下,如何通过Web页面快速高质量加载巨大的CAE计算结果,会是一个巨大的挑战。
 
工业强度的网格生成算法不仅有很深的理论问题,也有很大的程序开发工作量。德国的斯杭博士在德国开发Tetgen,从2000年左右开始一直只做这样的一件事情,坚持了20年,才有了和商业四面体引擎ghs3d竞争的能力。同样法国Distene公司开发的MeshGems系列网格剖分系统被广泛用于商业CAE软件,最早来源于INRIA(法国国家信息与自动化研究所),十几个研发人员也专注开发了近20年。
 
工业软件这条路上,尽是寂寞的黑夜中的探索。
 
在NASA公布的CFD VISION2030战略咨询报告中,网格生成是单列的五项关键领域之一,并被认为是达成2030愿景的主要瓶颈。就在这样一个高难度的领域,国内很多软件都是裸奔,依靠Gmsh之类开源算法无法满足客户定制改进的要求,很难做到工业应用主流中去。
 
优化也是普遍性的数值方法,包括优化理论、代理模型等,是求解复杂工程问题的基础,更不用说对各种路径规划所涉及的矩阵理论、泛函分析、动态规划、图论等等,无不是多约束条件下的多目标自动解空间寻优,背后都是数学王国建构的基础之基。
 
各种CAE、EDA软件中需要多种计算数学理论和算法,包括线性方程组、非线性方程组求解、偏微分方程求解、特征值特征向量求解、大规模稀疏矩阵求解等都需要非常深厚的数学基础。如果不能熟练运用各种数学工具,对物理场的建模也就无从谈起。
 
 物理场面临着多种挑战
 
头疼的数学之后,接着是头疼的物理。这是仿真软件、EDA软件需要突破的地方。工业技术的源头,是对材料及其物理特性的开发与利用。因此,对多物理场及相互耦合的描述与建模是各种仿真分析软件的核心。
 
而工业软件由于要解决的是真实的大千世界,所有看得见、看不见的物理场,都在按照各自的机理自由游荡。工业软件必须要跨越十分宽广的学科光谱,跨越了钱学森科学技术体系的基础科学、技术科学、工程科学、工程技术,而且也会包含大量的经验、诀窍等“前科学”知识。具体而言,任何CAE软件在市场上存身的根本都是其解决结构、流体、热、电&磁、光、声、材料、分子动力学等物理场问题的能力,每种物理场都包含丰富的分支学科。
 
仿真分析软件CAE的求解器由物理算法组成,每个专业领域都有一堆问题求解算法,不同领域如电磁、结构、流体的求解器处理机制,完全不同,基本没法通用;另外一方面,跟FEA有限元方法有关,采用的单元类型不同,问题求解算法也不同。因此,虽然也有第三方的求解器,但无法像三维CAD软件领域那样形成通过出售几何建模引擎和几何约束求解引擎获利的商业模式。
 
以结构为例,为解决结构设计的问题,有可能会涉及到理论力学,分析力学,材料力学,结构力学,弹性力学,塑性力学,振动力学,疲劳力学,断裂力学等一系列学科。在这个基础上,主流的CAE软件都支持结构优化功能。相对于传统的CAE的仅限于评估设计是否满足要求,结构优化软件在创成式设计等先进技术支持下可自动生成更好的结构轻,性能优、装配件少的更优设计。
 
由于现实世界的发展要求,产品的智能化提高导致的复杂度提高,往往产品本身涉及多场多域问题。物理场有太多的组合,相互之间又干扰不清。这些复杂的问题,既要深刻理解学科自身的物理特性,并对这些学科物理特性所沉淀的学科方程,如电磁的麦克斯韦方程、流体力学的伯努利方程、纳维-斯托克斯方程等等,深刻理解之外,还要对实际工程应用领域的多物理场交织耦合环境能够快速解耦,让不同学科不同特质的特征参数迭代过程中能够互为方程组求解的输入输出,以便对多场多域的工程问题进行优化。
 
随着现在需要处理的模型规模越来越大,模型本身也越来越复杂,现有国际上大型商业CAD、CAE、EDA中使用的几何建模引擎和几何约束求解商业化组件产品(包括InterOp、CGM、ACIS、CDS、Parasolid、D-Cubed等)厂商达索系统、西门子等也在不断跟进最新的计算机技术。比如最近也在采用多线程技术不断改进之前的算法,用于大幅提升模型导入、模型修复、缝合、实体建模、布尔运算、面片化以及约束求解的效率。
 
轮到了计算机科学
 
正如当年围绕机床的“数控技术”,很快就演变为“计算机数控技术”和“计算机辅助设计”一样,工业软件的诞生和早期发展受到计算机与多媒体硬件进步的推动,之后又随软件技术、互联网、计算模式的浪潮起伏。工业软件是软件,但它是硬件设备高度融合。二者无法分类,也不能相互修饰,就像两口子的结婚照,少了任何一张面孔都是不可想象的。工业软件,不可能忽视计算机科学与技术的问题。
 
这其中涉及到计算机硬件技术自身的迭代进步,从大型主机(Mainframe),到工程工作站,再到PC,最后来到云计算,甚至到未来的量子计算与普适计算,每当先进的计算技术出现,与之相匹配的工业软件,就会以鲜明的时代特征,出现在工业界的面前。
 
软件工程,是为了应对大型软件编码可靠性和质量管理问题的一门学科,而应时而生。它是支持协同开发、保障软件生命力的重要因素。软件工程是驱动软件全生命周期工程活动的基础学科。软件工程重点是算法分析、计算机安全、软件质量控制、软件测试与维护。这其中也涉及到系统架构设计、面向对象程序设计、数据库,计算机图形学与可视化、操作系统、编译原理、数据结构、HPC/GPU 并行计算等各种学科。
 
除了用户打交道最多的软件界面之外,工业软件需要涉及一个良好的软件架构和过程管理、统一数据标准、接口标准、方便几何建模引擎、约束求解器、前后处理、CAE求解器等优势资源集成。加速软件更新迭代,软件自动化验证,工程经验的积累,软件跨平台(集群,超算)部署,多种服务模式支持,二次开发脚本支持等,以至于后续大规模仿真数据的挖掘、分析等。
 
工业软件模型之间的兼容性问题,目前主要是通过遵循STEP标准解决的。在美国和欧洲,都有推动STEP标准开发及应用的非盈利组织,特别是近期包括波音、空客、GE、洛克希德-马丁等航空巨头推进的LOTAR(长期归档和检索)项目也是以STEP作为基础。各种CAD、CAE、EDA格式之间相互转换造成的信息丢失和精度丢失每年都会造成高达数十亿美元的损失,而如何有效复用这些模型数据也长期困扰着各个行业,特别是不少国内厂商在设计模型过程中没有遵循严格的标准,“制造”了不少问题数据,这些模型数据传递到下游行业也造成了很多问题,有些模型甚至基本不可复用。
 
工程知识是最后的淬火
 
如何将工业技术与知识写进软件,是业界最关注的议题。
 
麦克斯韦Maxwell能解决电和光的物理方程描述,但却解决不了一家电气制造商的设计制造问题。基础技术很重要,但不能解决工程问题。工业软件经过工程知识的淬火,才能与工业应用场景结合。
 
工业软件可以分为“基-通-专”的层次。第一层是类似CATIA、UG这样的基础通用平台。基础通用平台是最难的,它裹挟了多年的知识沉淀和用户使用习惯,因此门槛很高。在此之上,第二层是行业相对通用的知识,包括行业设计标准规范、试验测试数据、人机工程学等;而再上面一层是针对特定产品的专用知识,由于面非常窄,个性化非常明显,则往往更加小众,知识密度更大。
 
工程界的建模与分析问题,混合了很多不同维度的问题,既有基础学科的交叉如数学、如物理;又有不同的工程经验的混合。
 
因此工业界,其实基本不需要听阿里系、腾讯系所谈到的“建模”。他们会谈到建模,但在那里,那是一种社会科学、软科学,事关消费、交易,是商业而不是工业,完全无法解决工厂里的物理世界。他们用了同样的名词,却在做着不同的事情。
 
一个简单的示例可以区分两者的核心区别,互联网公司的用户画像建模,它们的这种模型,用大数据抽取年龄、收入、地域、阶层、职业、学历等等,然后关联到购物交易嗜好行为。而工业界一谈到用户画像建模,其实是完全不同的概念。首先它是一个计算机完全描述的对象模型,其多态使用场景随后也精确表征,而这种用户画像模型,如果用在设计阶段,就是人机工程分析、使用行为分析;如果用在生产现场,就是一个资源,有其资质、劳动能力等级、关键设备持证,安全区域等级等等所描述;如果是一个终端用户,则不同大陆百分位身高、驾驶习惯、驾驶舒适感包络、地域色泽嗜好等等是这种模型的特质,因为这样的三维模型可以直接载入虚拟产品中进行各种场景的模拟优化和体验,而与偏向购物交易促销的互联网用户画像模型相差十万八千里。
 
图4:模型分析(鸣谢达索系统吴敏提供此图)
 
制造现场涉及大量的工艺过程,这种Know-how的转移,是一个非常复杂的知识扩散现象。各种工艺如铸造、焊接、冲压、锻造、切削、热处理等,各有各的现场诀窍。许多暗默知识,只可意会不可言传,师傅的言传身授往往是最好的方法。而工业软件,正是向这种知识转化进行宣战。大量的制造经验,要想变成算法、编码,固化到软件,那都是一个漫长的过程。工业软件的价值,因此得以凝聚。
 
实际上,工程知识的汇聚,也会形成用户的使用习惯。一旦用户形成深度依赖,后来者软件的替代将成为非常艰难的攻城术。在芯片领域,电子设计自动化软件EDA则深度地嵌入到芯片设计公司和晶圆代工公司,三者相互连接在一起,不可分离。很多EDA软件,根本得不到代工工厂的工艺数据,而这是EDA发展历程中最为重要的养分。没用了用户的反馈,软件因此而 “饿的面黄肌瘦”。
 
工业软件是人类制造知识的最好结晶体
 
工业软件是架构在数学科学、物理科学、计算机技术和工业技术之上的宏大建筑,一座复合型知识的宫殿。
 
工业软件最奇妙的地方,它一旦集成了前人的技术,它就很少会流失。这跟任何一种设备类的不同,一个老工程师不在了,现场工艺就可能断掉。但工业软件则是一层一层,既有来自软件厂商数学、物理奇才的心血,更有来自数百万工业用户的使用反馈——这形成了一座坚实的护城河。唯有如此,它综合了如此不同的精华,工业软件才成为人类知识的集大成者。
 
这是真正的工业之花。一花虽小,世界皆在。

工业软件活力不断

经过六十多年的发展,工业软件不仅没有看到任何衰退的拐点,反而从产品深度和新技术的融入,呈现了年轻人一般的活力。可以说,工业软件是正当壮年。各种工业软件公司,在其已经构建的工业学科基础上,突破屏障,向生命科学、智慧城市、增材制造、纳米材料等更多领域突破。

工业软件,呈现了知识软件化,和空间数字化的结合。软件化是把产品从市场开发到制造的整个过程,所涉及的知识与流程都实现固化的特征,而数字化是把物理世界的对象及其关系,都通过数据方式进行呈现。工业软件的发展历史进程中,随着产品对象和制造设备的不同,会产生出不同的软件形态。

工业软件,由于以代码的形式躲在硬件的后面,无形无影,很少有人会去思考的它的形状和构成。就像水流一样,既无法区分它的形状身段,也难以对它进行切分。

然而令人惊讶的是,工业软件其实是一个以组件为主的装配行业。它的构成,呈现了强烈的积木特征,从而构成了一个极其独特的隐形组件形态。

软积木的装配行业

从产业角度看,工业软件的开发过程是在加速的。这是因为,它的共性部分,逐渐被抽离出来定义商业化。这一点本来并不值得奇怪。早在CAD刚刚诞生不久,它的几何内核就被逐渐剥离出来。英国剑桥大学CAD实验室是英国CAD的源头,1973年IanBraid在此完成了“体素设计”的博士论文,以此为基础创建了后来被称为Parasolid的几何内核。1986年美国Spatial Technology公司成立,同样邀请Ian Braid以及其导师与同窗合作,并以其名字首字母命名其产品ACIS, 促进了工业软件核心的组件化与产业化的进程。几何内核可以看成是工业软件之CAX软件“宇宙原力”的建模引擎,并且成功地商业化。Parasolid当前属于西门子工业软件PLM Components事业部,全球有近200多家软件公司使用Parasolid几何内核。2000年,Spatial被达索系统收购,全球有近100多家软件公司使用。绝大部分CAD软件公司,都会使用这些几何内核,在此基础上开发自己的产品。

这种将功能组件进行剥离并且商业化的思路,大大推动了工业软件社会化分工的发展。

近60年的发展,工业软件早已经成为一个成熟的产业。跟汽车、飞机等一样,有着不同层面的成熟供应商与基于新技术发展中的供应商。一个机械CAD软件,可以分解成几十个组件。每个组件其实并没有想象中那么大的团队在维护,人数大概在30-200人之间,大部分是几十人的团队。各个有独特技术的公司都可以分一杯羹。这使得工业软件产品,正在由大部分自主研发,走向组合式的发展。

过去传统的机械CAD软件公司,需要长达十年周期才可能商业化。而今天,只需投入200人左右花费2年的时间,就可以开发出面向行业的比较全面的基础模块(零件、装配体、工程图)。开发难度,正在降低。

工业软件的四层组合

就像自然界一样,简单的食物链随着时间,也逐渐以分层的方式进行分化。时至今日,整个工业软件的产业界,已经发展出成熟的产业提供商(组件)的生态。分别为系统层、组件层、应用层和人机交互层。

系统层是由操作系统、图形标准等构成。今天CAX软件一般都是建立在Windows操作系统之上,Unix\Linux也有一些。由于历史演进的原因,一些软件依然可以运行在Unix之上, 但随着时代发展,一些软件公司为了降低维护成本,未来主要以Windows系统和基于云的方式部署为主。

灰色部分是最基本的组件,这是构建CAX软件最基础、最核心组件,构成其产品属性的组件。比如:最底层的组件,几何引擎,它包括曲面建模、小面片建模与实体建模引擎。不管是CAD、CAE、CAM软件,目前国际化的商业软件基本都包含有其此类组件。

组件的价值是提供各种算法,但它属于通用的。因为几何建模,是数学、图形学、计算机科学的结合物,可以广泛应用。作为CAD软件,最为核心之一就是几何建模引擎(内核),它代表了一款软件的基础能力,主要有三种方式,实体建模、小面片和曲面建模。这是三种主要的建模引擎,从这个意义讲,几何内核的数学特性已经达到了巅峰地步,很难有所突破。但并不是所有的几何建模引擎都支持这三种建模技术,或者说CAX都需要有这三种内核。工业软件根据用途分为很多类型,很多软件只需要其中一种或者两种。例如:非常活跃的创成式设计,就是实体建模+小面片的结合。

如果要开发一款CAD软件,那至少还需要加上几何约束器;如果是CAE软件,那至少还需要加上网格剖分的组件(求解器属于应用层);如果是CAM软件,还至少还需要加上加工路径规划的组件;如果是机器人离线编程软件OLP,那还需要加上机器人路径规划的组件等等。当然光有这些还不够,有的时候还需要打开其他软件设计的模型,那么这个时候还需要数据转换的组件;有的时候需要对画好的模型进行渲染,那还需要渲染的组件。越往上的组件,有的时候既可以作为组件,也可以作为产品,但很多时候主要以软件模块的方式存在。

如果说组件层,是可以进行商业化的组合。那么应用层,就是真正考验一个软件公司的功力的时候。它直接决定了一个软件的功能特性。这完全靠时间堆砌,这也决定了软件的生死。

工业软件产业链的组装特性,最为典型的,发生在上个世纪90年代的Solidworks软件。一方面它是抓住了Windows界面的机会,另外不为人所熟悉的就是它率先大胆地采用了组件的思想。这家公司在1993年成立,而在1995年就开发上市一套令人耳目一新的3DCAD软件。这背后就是组件思想,或者是“模块装配”。就是基于产业链思想进行开发。Solidworks在此思想上发挥的淋漓尽致。有现成组件,绝不会自己开发。正因为基于这种思想以及把精力放在应用层(市场用户的需求上),迅速被达索系统盯上,在1997年就被收购,这似乎让它失去了更好的独舞表演机会。而它的创始人,在2012年再次出山,成立了一家三维云CAD:Onshape。这是人们最早开始在云端来实现三维设计的尝试,它也较好地融合了协同设计的特性。到了2015年,第一款新品得以发布。如此快速的时间,都是得益于软件的装配属性。

知识装配,组件走向极致化

就像汽车行业一样,既然有零部件的类别,那么就有主要的零部件供应商公司了。工业软件行业内同样也是如此。

工业软件CAX,一般主要有11类的基础组件的供应商。随着新技术的发展,还在源源不断的增加。几何引擎最主要的产品主要有:Parasolid,ACIS,这两款组件几乎覆盖全球最主要的CAX/AEC厂家,而开源几何引擎Open CASCADE(OCC)非常受国内CAX厂家的青睐,基本模块免费与开源 ,其他模块要收费。

几何约束器在商业化的MCAD厂家中几乎都是以DCM为主;而全球90%以上的商业化CAM软件公司,都在使用ModuleWorks与MachineWorks这两家公司的产品,用来生成加工刀路的路径。CAE中,不少大型CAE厂家在使用MeshGems作为网格剖分的引擎。而在数据转换器,供应商主要有两家:HoopsExhange与InterOp。而作为三维CAD另一个非常重要的组件几何约束器,几乎都是西门子收购的D-Cube公司DCM的天下。

组件是构建CAX软件的基础,在行业中,即使包括工业软件巨头,也不会所有的组件和产品都自己来做,这是产业发展成熟度的标志,正如特斯拉不会整车和零部件都靠自己来造。而组件是一个在不断发展的产业链,随着新技术的到来,产业链中会发展出不同的组件。组件最大的一个特点,它是某一类技术的集合,由点发展到线,再发展到面。学术层面主要是到点的层次或者线的层次,而要组件化,则还需要有一个产业化的过程,通过产业化与商业化的结合,通过不断的完善,带动组件发展起来。

这种以组件形式存在的软件供应链,就是为了成本,提高效率。当然,在当今的环境下,也可能会成为一种危险的软件供应链的封锁术。

发展的形态

工业软件最大的工程量与最核心的竞争力主要是在应用层,用户很少会关心用哪些内核,哪些组件。用户最关心的是,有哪些针对性的功能模块,是否好用。而对于中国工业软件厂商,要选择突破口,需要有一个理性的判断。

组件产业的发展,不仅仅是在商业模式上,在产品开发的成本上都具有产业发展的特点,它直接影响其产品对应用层的延伸能力、性能、稳定性、健壮性。但是它与行业应用场景(应用层)不会直接产生关系,中间还有应用层的功能,应用层与用户行业相关,所以需要通过大量的时间与用户交互,才能完善其功能。在这里还是以MCAD软件为例,目前国际上最主要的MCAD主流软件(面对中小型市场),差不多有40个模块左右,一款高端MCAD软件,差不多有150个模块左右。其中实体建模、曲面、装配等为基本模块,而钣金、焊件、管路、模具等等为行业的应用层,后面还其他扩展模块,比如渲染、工业设计、高级曲面、公差分析等。

应用层因为其与行业相关性非常高,可以做出垂直的特点,因此也成为工业软件真正百花齐放的地方。与此相反,通用型CAD/CAE的发展窗口,正在越来越狭小,后来者的机会越来越少。通用软件正在以平台化的方式快速发展。某国外CAD软件公司生态合作伙伴分类,有520多个第三方应用层模块,并且把全球与其合作的生态合作伙伴分为11大类,每一大类中还分成若干小类,几乎覆盖基于MCAD的CAD领域全球所有的第三方应用层模块公司。

这些公司产品通常分为两种形式,一种是有自己独立的图形用户界面GUI,独立进行销售。还有一种方式,就是作为模块的插件,使用其他载体产品的GUI,通常会针对数个同类产品进行开发,借用后者成熟的渠道进入市场。这是更加隐形的软件模块。

从应用生态公司的发展路线来看,这些公司通常最终的宿命会被那些大公司收购,这个方面可以通过前端章节中看到各大公司的收购史,其中很大一部分公司在没有收购之前是以这些公司的插件形式进入市场,甚至有些软件都放弃自己的独立GUI方式开发,直接基于某款载体软件如MCAD或者CAE软件进行开发。

目前国际上知名的工业软件公司,主要投入放在应用层的开发与收购上。从主要工业软件公司的规模与收入、成立时间与人员投入来看,MCAD类的公司,规模是属于第一梯队的;CAE类公司规模属于第二梯队;绝大部分CAM类公司与其他模块属于第三梯队类的公司。

正是由于工业软件的组装特性,产生了大量精于做各种组件的公司。这些丰富的小鱼生态,围绕大鱼的发展,从而让工业软件这个行业成为一个繁忙的并购王国。

对于中国的发展而言,如果上来就盯着第一梯队或者第二梯队的佼佼者直接追赶,其实是很难有胜算的机会。因此走垂直行业的特色路线,才会有更好的商业潜力。而与此同时,真要建立一套独立可控的工业软件体系,必须同步培养一个丰富的组件生态,这才符合工业软件的装配特性。忙于扶持一家大的头部公司,而不考虑软件供应链的微生态,国产工业软件是很难发展壮大起来。

 
打印本页 || 关闭窗口
 氢简史 |  气体设备专业搜索 |  中国氯碱网 |  2019中国国际氢能与燃料电池技术应用 |  气体产业网 |  中国天然气行业联合会 |  嵩山电热元件 |  气瓶云 |  开封创新测控仪表有限公司 |  西南化工研究设计院 |  中国火力发电网 |  大连化物所 |  厦门科昊仪器仪表网 |  氯碱产业网 |  制氢站 |  嵩山高温元件 |  制氢、制氮、配气站 |  氢能专利转让平台 |  开封创新测控仪表有限公司 |  氢能专利转让平台 |  12 |  13 |  14 |  15 |  16 |  17 |  18 |  19 |  20 |  30 |  2020广州国际氢能与燃料电池汽车及加氢 |  硅钼棒、硅碳棒、电热元件 |  整流柜 |  35 |  36 |  60 |  61 |
  | 关于我们  | 人才招聘联系我们 | 会员中心  | 更多链接>> | 收藏本站 |

版权所有:2006-2026,文章版权归气体设备网所有,没有本网书面授权,严禁转摘、镜像 信息产业部备案序号:ICP备17021983号-1
(顾问团队有气体设备设计、生产、调试、维修等服务经验)微信号:qtsbzqw 技术专线:13812683169 抖音;A13812683169 微视;13812683169 E-mail:cn1229
江苏省苏州吴中开发区、倡导行业正气之风,推动厂家技术创新.为提高气体设备,能源行业整体水平继续努力) 服务:QQ:1063837863、 13812683169@163.com